Title of article :
Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon
Author/Authors :
Geisler، نويسنده , , Thorsten and Schleicher، نويسنده , , Helmut، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
269
To page :
285
Abstract :
We present a simple new background modeling method particularly for the determination of trace concentrations of Pb, U and Th to date zircons chemically by electron microprobe. This method reduces the acquisition time considerably, and at the same time increases the precision of a single Pb, U and Th analysis. Depending on the analytical conditions, theoretical detection limits down to 45 ppm (99% confidence level) for U, Th and Pb could be obtained. The final precision on age for a single measurement was between ±8 and ±35% (lσ) at Pb concentrations between 100 and 200 ppm in Proterozoic zircons. Precise U, Th and Pb analyses, however, do not necessarily facilitate a straightforward chemical age calculation. U-Th-total Pb data of zircons from four granites could not be objectively interpreted because of a severe disturbance of the U–Th–Pb system. However, it is shown that chemical ages derived only from zircon areas containing less than ∼ 0.2 wt.% CaO agree very well with published conventional radiometric ages of these rocks. We propose a model which explains the Ca gain and Pb loss of zircons which have not undergone any metamorphism after emplacement to be the result of a hydration of radiation damaged zircon domains through low temperature aqueous solutions. It is suggested that the Ca content can be used independently from U, Th and Pb analyses as a chemical criterion to discriminate between altered zircon domains, having suffered a low temperature fluid-induced Pb-loss, and non-altered zircon domains for which there is a high probability that they will give concordant U-Th-Pb ages. © 2000 Elsevier Science B.V. All rights reserved.
Keywords :
geochronology , zircon , U-Th-total Pb dating , electron microprobe , Metamictization
Journal title :
Chemical Geology
Serial Year :
2000
Journal title :
Chemical Geology
Record number :
2256451
Link To Document :
بازگشت