Title of article :
Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings
Author/Authors :
Augusti، نويسنده , , Angela and Betson، نويسنده , , Tatiana R. and Schleucher، نويسنده , , Jürgen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The deuterium (D) abundance of tree-ring cellulose archives past climatic conditions, but previous attempts to access this archive have led to conflicting results. Based on an overview of D fractionation mechanisms in plants, we explain why past measurements of D abundance yield unreliable paleo signals. Our data show that variation in D abundance among the C–H groups (isotopomer variation) of tree-ring cellulose is generally greater than variation in D abundance due to climatic influences. A comparison of the D isotopomer abundances of soluble sugars of annual plants and of trees, and of tree-ring cellulose shows that an “isotopomer pattern” of the C3 photosynthetic pathway is transmitted from soluble sugars to tree-ring cellulose. Differences in this pattern between oaks and conifers appear to be related to differences in metabolism. Furthermore, the patterns are modified by hydrogen isotope exchange between C–H groups and source water during cellulose synthesis. Based on these results, we propose a strategy to simultaneously reconstruct climate signals and signals related to tree physiology from D isotopomers of tree rings. Combination of climate signals and physiological signals may allow the detection of century-time-scale adaptations of trees to past environmental change, and help to forecast future adaptations.
Keywords :
metabolic control , NMR , isotopomer , climate reconstruction , stable isotope , Biochemical pathway
Journal title :
Chemical Geology
Journal title :
Chemical Geology