Title of article :
Late Quaternary reef growth and sea level in the Maldives (Indian Ocean)
Author/Authors :
Gischler، نويسنده , , Eberhard and Hudson، نويسنده , , J. Harold and Pisera، نويسنده , , Andrzej، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
104
To page :
113
Abstract :
Based on rotary drilling and radiometric and U-series dating, we present the first comprehensive data on Holocene reef anatomy and sea-level rise as well as nature and age of underlying Pleistocene limestone in the Maldives. Holocene reefs in Rasdhoo Atoll, central Maldives, are composed of four facies including (1) robust-branching coral facies, (2) coralline algal facies, (3) domal coral facies, and (4) detrital sand and rubble facies. Branching coral and coralline algal facies predominate the marginal reefs and domal corals and detrital facies preferentially occur in a lagoon reef. In addition, microbialite crusts are found in lower core sections of marginal reefs. Microbialites formed during the early Holocene in reef cavities. Holocene reef thickness ranges from 14.5 m to > 22 m. Reef growth started as early as 8.5 kyr BP. Marginal reefs accreted in the keep-up mode with rates of > 15 m/kyr. Rate of sea-level rise significantly slowed down from 7–6 kyr BP and subsequently gradually rose with rates < 1 m/kyr. The lagoon reef accreted in the catch-up mode with rates of around 4 m/kyr. Even though no indications of a higher than present sea level were found during this study, it is not entirely clear from the data whether the sea gradually rose to or exceeded present level in the late Holocene. Submarine cementation in Holocene reefs studied is rather weak, presumably as a consequence of high accretion-rates, i.e., short time available for consolidation. Pleistocene coral grainstone was encountered in one core at 14.5 m below present level and three U-series dates indicate deposition during marine isotope stage 5e ca. 135 kyr BP.
Keywords :
reef , sea level , Pleistocene , Holocene , Maldives
Journal title :
Marine Geology
Serial Year :
2008
Journal title :
Marine Geology
Record number :
2261501
Link To Document :
بازگشت