Title of article :
Robust Design of Supercritical Wing Aerodynamic Optimization Considering Fuselage Interfering
Author/Authors :
Jiangtao، نويسنده , , Huang and Zhenghong، نويسنده , , Gao and Ke، نويسنده , , Zhao and Junqiang، نويسنده , , Bai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic design. The aerodynamic robust optimization design system consists of genetic optimization algorithm, improved back propagation (BP) neural network and deformation grid technology. In this article, the BP neural network has been improved in two major aspects to enhance the training speed and precision. Uniformity sampling is adopted to generate samples which will be used to establish surrogate model. The testing results show that the prediction precision of the improved BP neural network is reliable. On the assumption that the law of Mach number obeys normal distribution, supercritical wing configuration considering fuselage interfering of a certain aerobus has been taken as a typical example, and five design sections and twist angles have been optimized. The results show that the optimized wing, which considers robust design, has better aerodynamic characteristics. Whatʹs more, the intensity of shock wave has been reduced.
Keywords :
aircraft design , robust design , BP neural network , Grid deformation , Normal distribution , genetic algorithm
Journal title :
Chinese Journal of Aeronautics
Journal title :
Chinese Journal of Aeronautics