• Title of article

    Characterization of the surface of Fe–19Mn–18Cr–C–N during heat treatment in a high vacuum — An XPS study

  • Author/Authors

    Zumsande، نويسنده , , K. and Weddeling، نويسنده , , A. and Hryha، نويسنده , , E. and Huth، نويسنده , , S. and Nyborg، نويسنده , , L. and Weber، نويسنده , , S. and Krasokha، نويسنده , , N. and Theisen، نويسنده , , W.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    11
  • From page
    66
  • To page
    76
  • Abstract
    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe–19Mn–18Cr–C–N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 °C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 °C.
  • Keywords
    High CrMn austenitic steel , Oxide characterization , Surface Analysis , Powder metallurgy
  • Journal title
    Materials Characterization
  • Serial Year
    2012
  • Journal title
    Materials Characterization
  • Record number

    2268600