Title of article :
Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy
Author/Authors :
Cui، نويسنده , , Li and Li، نويسنده , , Xiaoyan and He، نويسنده , , Dingyong and Chen، نويسنده , , Li and Gong، نويسنده , , Shuili، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Butt joints of 3.0 mm thick sheets of an Al–Li based alloy have been produced using Nd:YAG laser welding without filler metals. The hardness distribution and microstructure of the alloy and welded joints were investigated. The changes in the grain shapes, grain orientations, microtexture, and precipitates of the fusion zone were analyzed using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that Nd:YAG laser welding leads to a change of the microhardness, grain shape, grain orientations, and a disappearance of the microtexture and precipitates. A narrow band of EQZ along the fusion boundary and a predominantly equiaxed dendritic structure are developed in the fusion zone. The formation of the predominately equiaxed dendritic grains is due to a heterogeneous nucleation mechanism aided by equilibrium A13Zr phases as well as the growth of pre-existing nuclei created by dendrite fragmentation, or by grain detachment resulted from Nd:YAG laser welding processes. In addition, Nd:YAG laser welding produces lower Vickers hardness than that of the base metal due to the decrease in the in quantity of δ′ precipitates in the fusion zone.
Keywords :
Al–Li based alloy , Nd:YAG laser welding , microstructure , Microhardness , EBSD
Journal title :
Materials Characterization
Journal title :
Materials Characterization