Title of article :
Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution
Author/Authors :
Eckert، نويسنده , , Susan N. and Parent، نويسنده , , E. and Richard، نويسنده , , D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
88
To page :
107
Abstract :
Return period is a classical tool for avalanche hazard mapping but is often poorly defined. To reduce ambiguity, high quantiles of a given quantity should be preferred. Inspired by the statistical–topographical “Norwegian” approaches and concepts developed by Ancey and Meunier, this paper presents a new method for computing the predictive distribution of snow avalanche runout distances. We evaluate the uncertainties associated with design values using a very simple propagation operator and minimal statistical hypotheses. Only release and runout altitudes are necessary, allowing the model to work with the French historical avalanche database. pose a stochastic model flexible enough to reasonably capture avalanche data variability and to express inter-variable correlations. The Bayesian framework facilitates parameter inference and allows taking estimation error into account for predictive simulations.
Keywords :
Avalanche predetermination , Runout distance , Bayesian framework , Return period
Journal title :
Cold Regions Science and Technology
Serial Year :
2007
Journal title :
Cold Regions Science and Technology
Record number :
2271637
Link To Document :
بازگشت