Title of article :
Measuring and localizing acoustic emission events in snow prior to fracture
Author/Authors :
Manuel and Reiweger، نويسنده , , Ingrid and Mayer، نويسنده , , Klemens and Steiner، نويسنده , , Kevin and Dual، نويسنده , , Jürg and Schweizer، نويسنده , , Jürg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
10
From page :
160
To page :
169
Abstract :
Acoustic emissions (AE) are transient elastic waves produced by a sudden redistribution of stress in a material caused by changes in the internal structure. In other natural, heterogeneous materials monitoring AE has proven to be a valuable tool for stability estimation and failure prediction. After studying the characteristics of ultrasonic wave propagation in snow, we measured the acoustic emission signals during snow loading experiments in a cold laboratory. Using snow columns we found that most energy of an artificial acoustic signal was transmitted at 31 kHz. Best coupling to snow was achieved by attaching the AE sensors with silicone adhesive to thin aluminium plates which were then frozen to the snow. Localizing AE events during fracture of layered snow samples showed that the AE originated within the weakest layer, i.e. the relevant layer for snow failure. For finding an indication of imminent failure, we analysed the exponent β of the cumulative size-frequency distribution (‘survival curve’) of event energy. At the occurrence of instabilities, the β-curve deviated from steady behaviour and exhibited distinct ‘drops’, indicating that the power law behaviour of the distribution was not fulfilled anymore. Studying the temporal evolution of the exponent β might therefore provide useful information about snowpack stability also in the field—provided that the AE signals are not too strongly attenuated and can be detected in time before catastrophic failure occurs.
Keywords :
Snow , fracture , acoustic emission , Weak layer
Journal title :
Cold Regions Science and Technology
Serial Year :
2015
Journal title :
Cold Regions Science and Technology
Record number :
2273295
Link To Document :
بازگشت