Title of article :
Measurements of combustion properties in a microwave enhanced flame
Author/Authors :
Stockman، نويسنده , , Emanuel S. and Zaidi، نويسنده , , Sohail H. and Miles، نويسنده , , Richard B. and Carter، نويسنده , , Campbell D. and Ryan، نويسنده , , Michael D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
1453
To page :
1461
Abstract :
Microwave induced flame speed enhancement is quantified in a laminar, premixed CH4/air wall stagnation flat flame. Experiments were performed in a high Q microwave cavity with the cavity tuned so that the maximum microwave field is located in the vicinity of a flat flame front. Equivalence ratios were varied between 0.6 and 0.8. When the flame is radiated by a continuous wave microwave field of approximately 5 kV/cm, the flame front is observed to move towards the burner exit and stabilize at a standoff distance corresponding to a flame speed increase of up to 20%. No microwave discharge is observed, indicating that the enhanced flame speed arises from microwave energy deposited directly into the reaction zone through coupling to the weakly ionized gas in that region. Laser diagnostics were performed to quantify temperature increase, the laminar flame speed enhancement, and changes in the OH radical concentration through filtered Rayleigh scattering, particle image velocimetry, and planar laser induced fluorescence, respectively. These measurements indicate that microwave radiation may prove to be an effective means to non-invasively control and enhance flame stability in combustors.
Keywords :
microwave , Electric field , Hydrocarbon combustion , Plasma assisted combustion , PIV flame speed , Rayleigh temperature , OH–PLIF
Journal title :
Combustion and Flame
Serial Year :
2009
Journal title :
Combustion and Flame
Record number :
2274775
Link To Document :
بازگشت