Title of article :
Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products
Author/Authors :
Sullivan، نويسنده , , Kyle T. and Wu، نويسنده , , Chunwei and Piekiel، نويسنده , , Nicholas W. and Gaskell، نويسنده , , Karen and Zachariah، نويسنده , , Michael R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
438
To page :
446
Abstract :
This work investigated Ag2O as a potential oxidizer in antimicrobial energetic systems. Ultrafine Ag2O was synthesized, and its performance in nanoaluminum-based thermite systems was evaluated using a constant volume combustion cell. The Ag2O alone was found to be a relatively poor oxidizer, but it performed well when blended with more reactive oxidizers, CuO and AgIO3. Time-resolved mass spectrometry was used to investigate the reaction mechanism in more detail. Post-reaction analysis confirmed the production of Ag, but it was seen to exist in a matrix with Cu in the Al/CuO/Ag2O ternary system. The product in surface contact with Al2O3 suggested a reactive sintering mechanism occurred. The results indicate that Ag2O, while a poor oxidizer itself, can be integrated into more reactive systems to produce high yields of biocidal silver. The morphology of the final product, however, indicates that a large amount of the silver may not be surface-exposed, a result which would negatively impact the biocidal activity.
Keywords :
Biocide , Synthesis , energetic materials , Pressure cell , Time resolved mass spectrometry , Nanoaluminum
Journal title :
Combustion and Flame
Serial Year :
2013
Journal title :
Combustion and Flame
Record number :
2276719
Link To Document :
بازگشت