Title of article
Antiplane seismic response from semi-sine shaped valley above embedded truncated circular cavity: a time-domain half-plane BEM
Author/Authors
Panji، Me. نويسنده Department of Civil Engineering, Zanjan Branch, Islamic AzadUniversity, Zanjan, IRAN Panji, Me. , Kamalian، M. نويسنده International Institute of Earthquake Engineering and Seismology (IIEES) Kamalian, M. , Asgari Marnani، J. نويسنده Assistant Professor, Civil Engineering Department, Technical and Engineering Faculty, Central Tehran Branch, Islamic Azad University, Tehran, IRAN Asgari Marnani, J. , Jafari، M. K. نويسنده ,
Pages
14
From page
160
To page
173
Abstract
In this paper, normalized displacement amplitude of the ground surface was presented in the presence of the semi-sine
shaped valley above the truncated circular cavity embedded in a homogenous isotopic linear elastic half-plane, subjected to
obliquely propagating incident SH waves as Ricker wavelet type. The proposed direct time-domain half-plane boundary
element formulation was used and extended to analyze the combined multi-boundary topographic problems. While using it,
only boundary of the valley and the surrounding cavity should be discretized. The effect of four geometric parameters
including shape ratio of the valley, depth ratio, horizontal location ratio and truncation thickness of the cavity and incident
wave angle was investigated on the responses at a single dimensionless frequency. The studies showed that surface behavior
was completely different due to complex topographic features, compared with the presence of either valley or cavity alone. In
addition, the cavity existence below the surface could play a seismic isolation role in the case of vertical incident waves and
vice versa for oblique waves.
Journal title
International Journal of Civil Engineering(Transaction B: Geotechnical Engineering)
Serial Year
2014
Journal title
International Journal of Civil Engineering(Transaction B: Geotechnical Engineering)
Record number
2279137
Link To Document