• Title of article

    Sensitivity of numerical tracer trajectories to uncertainties in OGCM velocity fields

  • Author/Authors

    Iudicone، نويسنده , , D. and Lacorata، نويسنده , , G. and Rupolo، نويسنده , , V. and Santoleri، نويسنده , , R. and Vulpiani، نويسنده , , A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    13
  • From page
    313
  • To page
    325
  • Abstract
    Three different data sets of numerical drifters are obtained with degrading the time sampling (1 day, 1 month and 1 year) of the Eulerian velocity field computed from a Mediterranean general circulation model. The Finite-Scale Lyapunov Exponent (FSLE) technique is used to characterize, for each of the three data sets, Lagrangian dispersion properties in relation to the time resolution of the field. In particular, we are interested in measuring the unpredictability of trajectories due to the uncertainty in the knowledge of the velocity field. Our data analysis indicates that surface relative dispersion of the Mediterranean Sea has two regimes: exponential spreading due to chaotic advection at small scales (∼mesoscale) and super-diffusion at larger scales (up to ∼sub-basin scales). In this scenario, it is shown that trajectory evolution is most sensitive to the time sampling of the field at small spatial scales, while, at scales larger than ∼100 km, it is essentially independent from the details of the models. Also, FSLE is employed to visualize the geographical regions characterized by high Lagrangian unpredictability. The relation of FSLE with common oceanographic observables (e.g., local shear, velocity variance) is discussed.
  • Journal title
    Ocean Modelling
  • Serial Year
    2002
  • Journal title
    Ocean Modelling
  • Record number

    2279748