Title of article :
Assimilation de données dans un modèle dʹécosystème marin de la mer Ligure
Author/Authors :
Magri، نويسنده , , Stéphanie and Brasseur، نويسنده , , Pierre and Lacroix، نويسنده , , Geneviève، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
The objective is to explore the potentialities of sequential statistical estimation methods to assimilate observations in a primary production biological model coupled to a vertical 1D hydrodynamical model characterised by a k–l turbulent closure. The assimilation method is derived from the SEEK filter (Singular Evolutive Extended Kalman filter), which uses an error subspace represented by multivariate empirical orthogonal functions (EOFs). Real data assimilation experiments collected at sea have been realised to reconstruct the variability of the Ligurian Sea ecosystem during the FRONTAL field experiment. To cite this article: S. Magri et al., C. R. Geoscience 337 (2005).
Keywords :
Data assimilation , Kalman filter , Ligurian Sea , modélisation numérique , Numeric modelling , assimilation de données , Océanographie physique/biogéochimique , Filtre de Kalman , Mer Ligure , Physical/biogeochemical model
Journal title :
Comptes Rendus Geoscience
Journal title :
Comptes Rendus Geoscience