Title of article
Enhanced estimation of sonobuoy trajectories by velocity reconstruction with near-surface drifters
Author/Authors
Chang، نويسنده , , Y. and Hammond، نويسنده , , D. and Haza، نويسنده , , A.C. and Hogan، نويسنده , , P. and Huntley، نويسنده , , H.S. and Kirwan Jr.، نويسنده , , A.D. and Lipphardt Jr.، نويسنده , , B.L. and Taillandier، نويسنده , , V. and Griffa، نويسنده , , A. and ضzgِkmen، نويسنده , , T.M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
19
From page
179
To page
197
Abstract
An investigation to improve trajectory prediction using Lagrangian data is presented. The velocity field of a data assimilating model, EAS-16, is corrected using drifter observations taken during an experiment off Taiwan. The results are tested using another independent Lagrangian data set provided by sonobuoys launched in the same area. The latter have instrument chains that extend well into the water column. Consequently the corrected model velocities were projected into the water column in order to calculate sonobuoy trajectories. The drifter and sonobuoy trajectories both show two distinct regimes in the considered area of approximately 1/2° square. One regime is dominated by shelf dynamics, the other by meandering of the Kuroshio, with a sharp boundary dividing the two. These two regimes are not reproduced by the trajectories of the EAS-16 model. When the drifter data are blended with the model velocities, synthetic sonobuoy trajectories track the observed ones much better, and the two regimes are clearly depicted. Two different methods for the velocity reconstruction are tested. One is based on a variational approach and the other on a normal mode decomposition. Both methods show qualitatively similar improvements in the prediction of sonobuoys trajectories, with a quantitative improvement in the total rms error of approximately 50% and 25%, respectively.
Keywords
predictability , Lagrangian data assimilation , Drifter trajectories
Journal title
Ocean Modelling
Serial Year
2011
Journal title
Ocean Modelling
Record number
2280486
Link To Document