Title of article :
Kinetic models for superfluids: a review of mathematical results
Author/Authors :
Saint-Raymond، نويسنده , , Laure، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
11
From page :
65
To page :
75
Abstract :
The mathematical contributions by X.G. Lu (J. Statist. Phys. 98 (5/6) (2000) 1335–1394) and by M. Escobedo et al. (Electronic J. Differential Equations, Monograph 4 (2003)) presented in this Note constitute the first stage in the understanding of the superfluid dynamics, especially of the Bose–Einstein condensation, by means of kinetic models. The Boltzmann–Nordheim equation, which is physically relevant to describe dilute quantum Bose gases, sets important mathematical problems. Nevertheless, under an unphysical truncation of the collision cross-section at low energies, it has been proved that the spatially homogeneous Cauchy problem is well-posed. Furthermore, relaxation towards equilibrium holds in a weak sense, with the appearance of a singularity in infinite time if the initial mass is supercritical, which corresponds to the formation of a Bose–Einstein condensate. To cite this article: L. Saint-Raymond, C. R. Physique 5 (2004).
Keywords :
Cauchy problem , Kinetic equation , Bose–Einstein condensation , Problème de Cauchy , Condensation de Bose–Einstein , Relaxation towards equilibrium , Equation cinétique , Relaxation vers lיéquilibre
Journal title :
Comptes Rendus Physique
Serial Year :
2004
Journal title :
Comptes Rendus Physique
Record number :
2283335
Link To Document :
بازگشت