Author/Authors :
Aucour، نويسنده , , Anne-Marie and Faure، نويسنده , , Pierre and Gomez، نويسنده , , Bernard and Hautevelle، نويسنده , , Yann and Michels، نويسنده , , Raymond and Thévenard، نويسنده , , Frédéric، نويسنده ,
Abstract :
The chemical composition of Cretaceous leaf remains showing exceptionally well preserved cuticles was investigated using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and thermally assisted hydrolysis methylation (THM)-GC–MS. Samples of Coniferales (Frenelopsis) and Ginkgoales (Nehvizdya penalveri) leaf remains were collected from freshwater and coastal marine depositional environments. Material for pyrolysis included (i) untreated leaves and cuticles obtained after extraction from mineral rock matrix and bleaching, (ii) kerogen fraction from both materials, (iii) non-hydrolysable fraction from kerogen. The THM-GC–MS data from untreated leaves and bleached cuticles show that the fossil cuticle geopolymer essentially released aliphatic components upon thermal treatment, with a dominance of fatty acids (FAs) and n-alkanes/n-alkenes. The FAs are essentially resistant to bleaching and remain after solvent extraction. They occur mainly as short chain compounds ranging from C6 to C16 and with maximum abundance at C8–C9. The n-alkanes/n-alkenes from kerogen and the non-hydrolysable residue occur mainly as short chain compounds in the range C10–C16, with the highest abundance at C9–C12. The THM-GC–MS pyrograms of the fossil cuticles differ from those of cutan from fresh living plants. They support the preservation model via polymerization of monomers derived from cutin or from unsaturated cell FAs.