Title of article :
A study of lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermochemolysis: Comparison with CuO oxidation and van Soest methods
Author/Authors :
Klotzbücher، نويسنده , , Thimo and Filley، نويسنده , , Timothy R. and Kaiser، نويسنده , , Klaus and Kalbitz، نويسنده , , Karsten، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
1271
To page :
1278
Abstract :
We studied the degradation of lignin in leaf and needle litter of ash, beech, maple, pine and spruce using 13C-labelled tetramethylammonium hydroxide (13C TMAH) thermochemolysis. Samples were allowed to decompose for 27 months in litter bags at a German spruce forest site, resulting in a range of mass loss from 26% (beech) to 58% (ash). In contrast to conventional unlabelled TMAH thermochemolysis, 13C-labelling allows thermochemolysis products from lignin, demethylated lignin and other polyphenolic litter compounds (e.g. tannins) to be distinguished. Proxies for lignin degradation (phenol yield; acid/aldehyde ratio of products) changed considerably upon correction for the contribution of non-lignin sources to the thermochemolysis products. Using the corrected values, we found increasing acid/aldehyde values as well as decreasing or constant yield of lignin derived phenols normalised to litter carbon, suggesting pronounced lignin degradation by wood-rotting fungi. No indication for build up of demethylated lignin through the action of brown rot fungi on ring methoxyls was found. The results were compared with those of other analytical techniques applied in previous studies. Like 13C-TMAH thermochemolysis, CuO oxidation showed increasing lignin oxidation (acid/aldehyde ratio) and no/little enrichment of lignin derived phenols in the litter. Molecular lignin degradation patterns did not match those from analysis of total acid unhydrolysable residues (AURs). In particular, the long assumed selective preservation of lignin during the first months of litter decomposition, based on AUR analysis, was not supported by results from the CuO and 13C TMAH methods.
Journal title :
Organic Geochemistry
Serial Year :
2011
Journal title :
Organic Geochemistry
Record number :
2285977
Link To Document :
بازگشت