Author/Authors :
Hayes، نويسنده , , Thomas M. and Hayes، نويسنده , , Michael H.B. and Swift، نويسنده , , Roger S.، نويسنده ,
Abstract :
Aqueous solutions of increasing pH (7.0, 10.6 and 12.6) were used to extract exhaustively the organic matter (OM) from a pelo-stagnogley (heavy clay) soil in long term cultivation. OM yield was 1.7 times greater when the extracts were processed using an XAD-8 and XAD-4 resin-in-tandem procedure than that from the procedure of the International Humic Substances Society (IHSS). The substantial difference can be attributed to the amount retained by the XAD-4 resin, which is lost in the IHSS process. Elemental, δ13C, δ15N, cation exchange capacity, neutral sugars, amino acids and solid state CPMAS 13C NMR analyses indicated significant, but rational similarities and differences between the various fractions isolated. There was strong NMR evidence for material derived from lignin in all the humic and fulvic acid isolates. The signals were attenuated in the more transformed/oxidized fractions isolated at lower pH. Novel humic acid fractions enriched in carbohydrate/peptide functionalities were isolated from the more hydrophobic extracts at pH 10.6 and 12.6. Isolates from XAD-4, of microbial origin, were enriched in neutral sugars but not in amino acids, and had minimal aromaticity. Components isolated from the cultivated soil were broadly similar to those from a comparable soil in long term grassland. The compositions of fractions isolated from the drainage water were similar to those extracted from the soil but had higher carboxyl content. The amount and composition of the various organic fractions in grassland and the continuously cropped soil are discussed in terms of their potential to contribute to carbon sequestration by soil under similar management regimes.