Title of article :
New least-squares algorithm for model parameters estimation using self-potential anomalies
Author/Authors :
Abdelrahman، نويسنده , , El-Sayed M. and Essa، نويسنده , , Khalid S. and Abo-Ezz، نويسنده , , Eid R. and Sultan، نويسنده , , Mohamed and Sauck، نويسنده , , William A. and Gharieb، نويسنده , , Abdelmohsen G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
1569
To page :
1576
Abstract :
We have developed a new least-squares minimization approach to depth determination from self-potential (SP) data. By defining the anomaly value at the origin and at any two symmetrical points around the origin on the profile, the problem of depth determination from the residual SP anomaly has been transformed into finding a solution to a nonlinear equation of the form f(z)=0. Procedures are also formulated to estimate the polarization angle, amplitude coefficient and the shape of the buried structure (shape factor). The method is simple and can be used as a rapid method to estimate parameters that produced SP anomalies. The method is tested on synthetic data with and without random errors. It is also applied to a field example from Turkey. In all cases, the model parameters obtained are in good agreement with actual ones.
Keywords :
Least-squares algorithm , Self-potential anomaly , Model parameters determination
Journal title :
Computers & Geosciences
Serial Year :
2008
Journal title :
Computers & Geosciences
Record number :
2287397
Link To Document :
بازگشت