Title of article :
Grid-enabled high-performance quantitative aerosol retrieval from remotely sensed data
Author/Authors :
Xue، نويسنده , , Yong and Ai، نويسنده , , Jianwen and Wan، نويسنده , , Wei and Guo، نويسنده , , Huadong and Li، نويسنده , , Yingjie and Wang، نويسنده , , Ying and Guang، نويسنده , , Jie and Mei، نويسنده , , Linlu and Xu، نويسنده , , Hui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
202
To page :
206
Abstract :
As the quality and accuracy of remote-sensing instruments improve, the ability to quickly process remotely sensed data is in increasing demand. Quantitative remote-sensing retrieval is a complex computing process because of the terabytes or petabytes of data processed and the tight-coupling remote-sensing algorithms. In this paper, we intend to demonstrate the use of grid computing for quantitative remote-sensing retrieval applications with a workload estimation and task partition algorithm. Using a grid workflow for the quantitative remote-sensing retrieval service is an intuitive way to use the grid service for users without grid expertise. A case study showed that significant improvement in the system performance could be achieved with this implementation. The results of the case study also give a perspective on the potential of applying grid computing practices to remote-sensing problems.
Keywords :
GRID COMPUTING , Aerosol optical thickness , High-throughput computing , Remote-sensing.
Journal title :
Computers & Geosciences
Serial Year :
2011
Journal title :
Computers & Geosciences
Record number :
2287960
Link To Document :
بازگشت