Title of article :
Hybrid soft computing systems for reservoir PVT properties prediction
Author/Authors :
Khoukhi، نويسنده , , Amar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
109
To page :
119
Abstract :
In reservoir engineering, the knowledge of Pressure–Volume–Temperature (PVT) properties is of great importance for many uses, such as well test analyses, reserve estimation, material balance calculations, inflow performance calculations, fluid flow in porous media and the evaluation of new formations for the potential development and enhancement oil recovery projects. The determination of these properties is a complex problem because laboratory-measured properties of rock samples (“cores”) are only available from limited and isolated well locations and/or intervals. Several correlation models have been developed to relate these properties to other measures which are relatively abundant. These models include empirical correlations, statistical regression and artificial neural networks (ANNs). In this paper, a comprehensive study is conducted on the prediction of the bubble point pressure and oil formation volume factor using two hybrid of soft computing techniques; a genetically optimised neural network and a genetically enhanced subtractive clustering for the parameter identification of an adaptive neuro-fuzzy inference system. Simulation experiments are provided, showing the performance of the proposed techniques as compared with commonly used regression correlations, including standard artificial neural networks.
Keywords :
Correlation , Bubble point pressure , Pressure–volume–temperature , Oil formation volume factor , Genetically-optimised neural networks , Genetic-adaptive neuro-fuzzy inference systems
Journal title :
Computers & Geosciences
Serial Year :
2012
Journal title :
Computers & Geosciences
Record number :
2288663
Link To Document :
بازگشت