Title of article :
An automated mineral classifier using Raman spectra
Author/Authors :
Ishikawa، نويسنده , , Sascha T. and Gulick، نويسنده , , Virginia C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
259
To page :
268
Abstract :
We present a robust and autonomous mineral classifier for analyzing igneous rocks. Our study shows that machine learning methods, specifically artificial neural networks, can be trained using spectral data acquired by in situ Raman spectroscopy in order to accurately distinguish among key minerals for characterizing the composition of igneous rocks. These minerals include olivine, quartz, plagioclase, potassium feldspar, mica, and several pyroxenes. On average, our classifier performed with 83 percent accuracy. Quartz and olivine, as well as the pyroxenes, were classified with 100 percent accuracy. In addition to using traditional features such as the location of spectral bands and their shapes, our automated mineral classifier was able to incorporate fluorescence patterns, which are not as easily perceived by humans, into its classification scheme. The latter was able to improve the classification accuracy and is an example of the robustness of our classifier.
Keywords :
Machine Learning , Raman spectroscopy , Mars , igneous rocks , Mineral classification , Robotic exploration
Journal title :
Computers & Geosciences
Serial Year :
2013
Journal title :
Computers & Geosciences
Record number :
2289412
Link To Document :
بازگشت