• Title of article

    Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: III integral

  • Author/Authors

    Fukushima، نويسنده , , Toshio، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    5
  • From page
    17
  • To page
    21
  • Abstract
    The integrals of fully normalized associated Legendre function (fnALF) of extremely high degree and order such as 2 23 = 8 388 608 can be obtained without underflow problems if the point values of fnALF are properly given by using an exponent extension of the floating point numbers (Fukushima, T., 2012a. J. Geod., 86, 271–285; Fukushima, T., 2012c. J. Geod., 86, 1019–1028). A dynamic termination of the exponent extension during the fixed-order increasing-degree recursions significantly reduces the increase in CPU time caused by the exponent extension. Also, the sectorial integrals are found to be correctly obtained by the forward recursion only even when the backward recursion has been claimed to be necessary (Paul, M.K., 1978, Bull. Geod., 52, 177–190; Gerstl, M., 1980, Manuscr. Geod., 5, 181–199).
  • Keywords
    Spherical harmonic analysis , Exponent extension , Forward recursion , Integral of associated Legendre functions , Underflow problem
  • Journal title
    Computers & Geosciences
  • Serial Year
    2014
  • Journal title
    Computers & Geosciences
  • Record number

    2289783