Title of article :
Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: III integral
Author/Authors :
Fukushima، نويسنده , , Toshio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
5
From page :
17
To page :
21
Abstract :
The integrals of fully normalized associated Legendre function (fnALF) of extremely high degree and order such as 2 23 = 8 388 608 can be obtained without underflow problems if the point values of fnALF are properly given by using an exponent extension of the floating point numbers (Fukushima, T., 2012a. J. Geod., 86, 271–285; Fukushima, T., 2012c. J. Geod., 86, 1019–1028). A dynamic termination of the exponent extension during the fixed-order increasing-degree recursions significantly reduces the increase in CPU time caused by the exponent extension. Also, the sectorial integrals are found to be correctly obtained by the forward recursion only even when the backward recursion has been claimed to be necessary (Paul, M.K., 1978, Bull. Geod., 52, 177–190; Gerstl, M., 1980, Manuscr. Geod., 5, 181–199).
Keywords :
Spherical harmonic analysis , Exponent extension , Forward recursion , Integral of associated Legendre functions , Underflow problem
Journal title :
Computers & Geosciences
Serial Year :
2014
Journal title :
Computers & Geosciences
Record number :
2289783
Link To Document :
بازگشت