Title of article :
Space-based infrared near-Earth asteroid survey simulation
Author/Authors :
Tedesco، نويسنده , , Edward F and Muinonen، نويسنده , , Karri and Price، نويسنده , , Stephan D، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
16
From page :
801
To page :
816
Abstract :
We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth’s orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth’s Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish the Spaceguard goal in less time than the ground-based system alone. In addition, the result would be a catalog containing well-determined orbits, diameters, and albedos for the majority of ECAs with diameters greater than 500 m.
Keywords :
asteroid , Hazard , minor planet , Infrared , Neo , spacecraft , NEA , Near-Earth
Journal title :
PLANETARY AND SPACE SCIENCE
Serial Year :
2000
Journal title :
PLANETARY AND SPACE SCIENCE
Record number :
2310701
Link To Document :
بازگشت