Title of article :
A pelagic ecosystem model calibrated with BATS data
Author/Authors :
Hurtt، نويسنده , , George C. and Armstrong، نويسنده , , Robert A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
31
From page :
653
To page :
683
Abstract :
Mechanistic models of ocean ecosystem dynamics are of fundamental importance to understanding and predicting the role of marine ecosystems in the oceanic uptake of carbon. In this paper, a new pelagic ecosystem model that is descended from the model of Fasham et al. (Journal of Marine Research, 99 (1990) 591–639) (FDM model) is presented. During model development, the FDM model was first simplified to reduce the number of variables unconstrained by data and to reduce the number of parameters to be estimated. Many alternative simplified model formulations were tested in an attempt to fit 1988–1991 Bermuda Atlantic Time-series Study (BATS) data. The model presented here incorporates the changes found to be important. (i) A feature of the FDM physics that gives rise to a troublesome fall bloom was replaced. (ii) A biodiversity effect was added: the addition of larger algal and detrital size classes as phytoplankton and detrital biomasses increase. (iii) A phytoplankton physiological effect was also added: the adjustment of the chlorophyll-to-nitrogen ratio by phytoplankton in response to light and nutrient availabilities. The new model has only four state variables and a total of 11 biological parameters; yet it fits the average annual cycle in BATS data better than the FDM model. The new model also responds reasonably well to interannual variability in physical forcing. Based on the justification for changes (i)--(iii) from empirical studies and the success of this simple model at fitting BATS data, it is argued that these changes may be generally important. It is also shown that two alternative assumptions about ammonium concentrations lead to very different model calibrations, emphasizing the need for time series data on ammonium.
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Serial Year :
1996
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Record number :
2310917
Link To Document :
بازگشت