Title of article :
Geographical differences in seasonality of CZCS-derived phytoplankton pigment in the Arabian Sea for 1978–1986
Author/Authors :
Banse، نويسنده , , K and English، نويسنده , , D.C، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
55
From page :
1623
To page :
1677
Abstract :
In situ measurements of phytoplankton chlorophyll in the Arabian Sea were taken largely along temporally and spatially unevenly distributed sections, scarce especially prior to the operation of NASAʹs Coastal Zone Color Scanner (CZCS). Herein, the CZCS pigment observations between late 1978 and mid-1986 north of 10°N, including the outer Gulf of Oman, are depicted for 14 subregions beyond the continental shelves as daily means, often only five days apart. To eliminate bias from electronic overshoot, the data were reprocessed with a more conservative cloud screen than used for NASAʹs Global Data Set. The pattern, derived from the older in situ observations, of one period with elevated chlorophyll almost everywhere during the Southwest Monsoon (SWM) and one additional late-winter bloom in the north, is confirmed. The differing nitrate silicate ratios in freshly entrained water in the central and northern Arabian Sea seem to lead to different succession and perhaps to differing vertical fluxes, and during winter favor blooms only in the north. The spatial pigment pattern in the outer Gulf of Oman is not an extension of that of the northwestern Arabian Sea. The seasonal physical forcing explains much of the timing of pigment concentration changes, but not the levels maintained over long periods. From the CZCS observations it is unclear whether the period of high phytoplankton productivity expected during the SWM in the open Arabian Sea lasts for about two or four months. During this entire season, chlorophyll values in the upper layers rarely exceed 1–2 mg m−3 outside the zone influenced by the Arabian upwelling. Near 15°N, however, fluxes into sediment traps at 3 km depth indicate an onset of high primary production very soon after the arrival of the SWM and suggest a long period of high production in the open sea. The partial temporal disconnect during the SWM between pigment changes in the upper part of the euphotic zone and of fluxes into the traps is disconcerting. For future modeling of plankton production in the open Arabian Sea, the use of two size classes of phytoplankton is recommended. The utility of satellite-derived pigment concentrations (as opposed to temporal changes of pigment) for testing such models is questioned.
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Serial Year :
2000
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Record number :
2311702
Link To Document :
بازگشت