Title of article :
Reconstruction of surface water conditions in the central region of the Okhotsk Sea during the last 180 kyrs
Author/Authors :
Khim، نويسنده , , Boo-Keun and Sakamoto، نويسنده , , Tatsuhiko and Harada، نويسنده , , Naomi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
63
To page :
72
Abstract :
Core GC9A, a 6.7 m long gravity core collected from the central region of the Okhotsk Sea during Cruise YK0712 on R/V Yokosuka (JAMSTEC), was used to reconstruct the changes in surface water conditions by measuring biogenic components (biogenic opal, CaCO3, total organic carbon and δ15N of sediment organic matter) of sediment samples. The age of Core GC9A was determined indirectly by graphic correlation comparing the b⁎ (psychometric yellow–blue chromaticness) values with those of well-dated Core MD01-2415, with complement to the tephra layer (K3; 50 ka). The bottom age of Core GC9A was estimated to be about 180 kyr; therefore it provides the history of surface water conditions from MIS 1 to MIS 6. The biogenic opal, CaCO3, and TOC contents were high during the interglacial periods as expected, indicating enhanced surface water production under warm climatic conditions. This condition resulted from sufficient nutrient supply to the surface waters by active vertical mixing, which was validated by low δ15N values of the sediment organic matter. In contrast, surface water productivity was depressed during the colder glacial periods, probably due to the expanded sea-ice distribution and limited nutrient supply. However, the glacial sediments had moderately high δ15N values, indicating enhanced nitrate utilization resulting from the limited nutrient supply caused by strong stratification of the surface water. High δ15N values were also observed during the deglaciation, which was attributed to the increased nitrate utilization during enhanced surface water productivity. However, the low δ15N values during the glacial and deglacial periods may be attributed to the increased supply of terrestrial organic matter. Diatom production was primarily responsible for surface water paleoproductivity during the interglacial periods rather than coccolithophores. However, the succession of glacial to early deglacial coccolithophore production and late deglacial to interglacial diatom production was remarkable, corresponding to the present-day seasonal phytoplankton succession. Such an advanced coccolithophore production relative to diatom production might be attributed to the degree of nutrient availability associated with surface water conditions on the basis of variations in the δ15N value. Finally, the opal and TOC contents decreased abruptly in conjunction with a gradual decrease in CaCO3 content from about 2 ka, which seems to implicate a late Holocene sudden decrease in paleoproductivity in the central region of the Okhotsk Sea. According to the increase in δ15N values during this interval, nutrient availability appears to be poor, which is likely attributed to the resumed strong stratification that occurred due to the southward shift of the Aleutian Low atmospheric pressure system.
Keywords :
stable isotope , Geochemical proxy , deglacial , paleoproductivity , GLACIAL , interglacial , Okhotsk Sea
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Serial Year :
2012
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Record number :
2315970
Link To Document :
بازگشت