Title of article :
Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications
Author/Authors :
Antonucci، نويسنده , , Joseph M. and Zeiger، نويسنده , , Diana N. and Tang، نويسنده , , Kathy and Lin-Gibson، نويسنده , , Sheng and Fowler، نويسنده , , Bruce O. and Lin، نويسنده , , Nancy J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
219
To page :
228
Abstract :
Objectives despread incidence of recurrent caries highlights the need for improved dental restorative materials. The objective of this study was to synthesize low viscosity ionic dimethacrylate monomers (IDMAs) that contain quaternary ammoniums groups (antimicrobial functionalities) and are compatible with existing dental dimethacrylate-based monomers. Such monomers have the potential to copolymerize with other methacrylate monomers and produce antibacterial polymers. s nomers (IDMA-1 and IDMA-2) were synthesized using the Menschutkin reaction and incorporated at 0–30% (by mass) into a 1:1 (by mass) bisphenol A glycerolate dimethacrylate (BisGMA):triethylene glycol dimethacrylate (TEGDMA) resin. Resin viscosity was quantified using rheology, and polymer degree of conversion (DC) and surface charge density were measured using Fourier transform infrared spectroscopy (FTIR) and fluorescein binding, respectively. Effects of IDMA-1 on initial attachment of Streptococcus mutans and on viability and metabolic activity (via reductase enzymes) of RAW 264.7 macrophage-like cells were quantified. s and IDMA-2 were prepared and characterized. IDMA-1 was miscible with BisGMA:TEGDMA and slightly increased the resin viscosity and DC. As expected, polymeric surface charge density increased with increasing IDMA-1. Incorporation of 10% IDMA-1 into BisGMA:TEGDMA reduced bacterial colonization without affecting viability or metabolic activity of mammalian cells. Increasing IDMA-1 up to 30% had no additional effect on bacterial coverage, but ≥20% IDMA-1 significantly reduced macrophage density, viability, and metabolic activity. Leachables from polymers containing IDMA-1 were not cytotoxic. icance nschutkin reaction provides a facile, convenient means to synthesize new monomers with quaternary ammonium groups for dental and medical applications.
Keywords :
Degree of conversion , Menschutkin reaction , Dimethacrylate monomer , Quaternary Ammonium Salts , Surface charge density , Streptococcus mutans , bacterial adhesion , cytotoxicity , Dental restorative material , MTT assay
Journal title :
Dental Materials
Serial Year :
2012
Journal title :
Dental Materials
Record number :
2317892
Link To Document :
بازگشت