Title of article
Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool
Author/Authors
Jaccard، نويسنده , , S.L. and Galbraith، نويسنده , , E.D. and Sigman، نويسنده , , D.M. and Haug، نويسنده , , G.H. and Francois، نويسنده , , R. and Pedersen، نويسنده , , T.F. and Dulski، نويسنده , , P. and Thierstein، نويسنده , , H.R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
10
From page
156
To page
165
Abstract
Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial–interglacial change in deep North Pacific phosphate (PO4) concentration was minimal, which has been taken by some workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox-sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation – and thus respired carbon storage – over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was depleted in oxygen during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which would have lowered atmospheric carbon dioxide (CO2) by sequestering CO2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data would have accounted for a majority of the observed decrease in glacial atmospheric pCO2.
Keywords
Ocean Drilling Program , Site 882 , Leg 145 , Oxygenation , Subarctic North Pacific , Carbon storage , Redox-sensitive trace metals , preformed nutrient , JOIDES Resolution
Journal title
Earth and Planetary Science Letters
Serial Year
2009
Journal title
Earth and Planetary Science Letters
Record number
2327358
Link To Document