Title of article :
Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea
Author/Authors :
Vuorinen، نويسنده , , I. and Hنnninen، نويسنده , , J. and Kornilovs، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
18
From page :
339
To page :
356
Abstract :
Time series of freshwater runoff, seawater salinity, temperature and oxygen were used in transfer functions (TF) to model changes of mesozooplankton taxa in the Baltic Sea from the 1960’s to the 1990’s. The models were then compared with long term zooplankton monitoring data from the same period. The TF models for all taxa over the whole Baltic proper and at different depth layers showed statistically significant estimates in t-tests. TF models were further compared using parsimony as a criterion. We present models showing 1) r2 > 0.4, 2) the smallest residual standard error with the combination of exploratory variables, 3) the lowest number of parameters and 4) the highest proportional decrease in error term when the TF model residual standard error was compared with those of the univariate ARIMA model of the same response variable. Most often (7 taxa out of a total of 8), zooplankton taxa were dependent on freshwater runoff and/or seawater salinity. Cladocerans and estuarine copepods were more conveniently modelled through the inclusion of seawater temperature and oxygen data as independent variables. Our modelling, however, explains neither the overall increase in zooplankton abundance nor a simultaneous decrease found in the neritic copepod, Temora longicornis. Therefore, biotic controlling agents (e.g. nutrients, primary production and planktivore diets) are suggested as independent variables for further TF modelling. TF modelling enabled us to put the controlling factors in a time frame. It was then possible, despite the inherent multiple correlation among parameters studied to deduce a chain-of-events from the environmental controls and biotic feedback mechanisms to changes in zooplankton species. We suggest that the documented long-term changes in zooplankton could have been driven by climatic regulation only. The control by climate could be mediated to zooplankton through marine chemical and physical factors, as well as biotic factors if all of these were responding to the same external control, such as changes in the freshwater runoff. Increased runoff would explain both the increasing eutrophication, causing the overall increase of zooplankton, and the changes in selective predation, contributing to decline of Temora.
Keywords :
Zooplankton , Temperature , Salinity , Oxygen , Long-term changes , transfer functions , Baltic Sea , Runoff
Journal title :
Progress in Oceanography
Serial Year :
2003
Journal title :
Progress in Oceanography
Record number :
2328226
Link To Document :
بازگشت