Title of article :
Sub-slab mantle anisotropy beneath south-central Chile
Author/Authors :
Hicks، نويسنده , , Stephen P. and Nippress، نويسنده , , Stuart E.J. and Rietbrock، نويسنده , , Andreas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Knowledge of mantle flow in convergent margins is crucial to unravelling both the contemporary geodynamics and the past evolution of subduction zones. By analysing shear-wave splitting in both teleseismic and local arrivals, we can determine the relative contribution from different parts of the subduction zone to the total observed SKS splitting, providing us with a depth constraint on anisotropy. We use this methodology to determine the location, orientation and strength of seismic anisotropy in the south-central Chile subduction zone. Data come from the TIPTEQ network, deployed on the forearc during 2004–2005. We obtain 110 teleseismic SKS and 116 local good-quality shear-wave splitting measurements. SKS average delay times are 1.3 s and local S delay times are only 0.2 s. Weak shear-wave splitting from local phases is consistent with a shape preferred orientation (SPO) source in the upper crust. We infer that the bulk of shear-wave splitting is sourced either within or below the subducting Nazca slab. SKS splitting measurements exhibit an average north-easterly fast direction, with a strong degree of variation. Further investigation suggests a relationship between the measurementʹs fast direction and the incoming rayʹs back-azimuth. Finite-element geodynamic modelling is used to investigate the strain rate field and predicted LPO characteristics in the subduction zone. These models highlight a thick region of high strain rate and strong S-wave anisotropy, with plunging olivine a-axes, in the sub-slab asthenosphere. We forward model the sub-slab sourced splitting with a strongly anisotropic layer of thick asthenosphere, comprising an olivine a-axis oriented parallel to the direction of subduction. The subducting lithosphere is not thick enough to cause 1.2 s of splitting, therefore our results and subsequent models show that the Nazca slab is entraining the underlying asthenosphere; its flow causes it to be strongly anisotropic. Our observation has important implications for the controlling factors on sub-slab mantle flow and the movement of asthenospheric material within the Earth.
Keywords :
Seismic anisotropy , Mantle flow , asthenospheric entrainment , South-central Chile , subduction , Shear-wave splitting
Journal title :
Earth and Planetary Science Letters
Journal title :
Earth and Planetary Science Letters