Title of article :
Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments
Author/Authors :
Giada Iacono Marziano، نويسنده , , Giada and Gaillard، نويسنده , , Fabrice and Scaillet، نويسنده , , Bruno and Polozov، نويسنده , , Alexander G. and Marecal، نويسنده , , Virginie and Pirre، نويسنده , , Michel and Arndt، نويسنده , , Nicholas T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
319
To page :
326
Abstract :
Redox conditions in magma are widely interpreted as internally buffered and closely related to that of their mantle source regions. We use thermodynamic calculations to show that high-temperature interaction between magma and organic matter can lead to a dramatic reduction of the magma redox state, and significant departure from that of the original source. Field studies provide direct evidence of the process that we describe, with reported occurrences of graphite and native iron in igneous mafic rocks, implying very reducing conditions that are almost unknown in average terrestrial magmas. We calculate that the addition of 0.6 wt% organic matter (in the form of CH or CH2) to a standard basalt triggers graphite and native iron crystallization at depths of few hundred meters. ction with organic matter also profoundly affects the abundance and the redox state of the gases in equilibrium with the magma, which are CO-dominated with H2 as the second most abundant species on a molar basis, H2O and CO2 being minor constituents. The assimilation of only 0.1 wt% organic matter by a basalt causes a decrease in its oxygen fugacity of 2-orders of magnitude. The assimilation of 0.6 wt% organic matter at depths<500 m implies minimum CO content in the magma of 1 wt%, other gas components being less than 0.1 wt%. In the light of our calculations, we suggest that the production of native iron-bearing lava flows and associated intrusions was most likely accompanied by degassing of CO-rich gases, whose fluxes depended on the magma production rates.
Keywords :
magma-organic matter interaction , Gas emissions , graphite native iron saturation , CARBON MONOXIDE , Siberian Traps , Disko Island
Journal title :
Earth and Planetary Science Letters
Serial Year :
2012
Journal title :
Earth and Planetary Science Letters
Record number :
2330155
Link To Document :
بازگشت