Title of article
High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan
Author/Authors
Blanchet، نويسنده , , Cécile L. and Tjallingii، نويسنده , , Rik and Frank، نويسنده , , Martin and Lorenzen، نويسنده , , Janne and Reitz، نويسنده , , Anja and Brown، نويسنده , , Kevin and Feseker، نويسنده , , Tomas and Brückmann، نويسنده , , Warner، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
13
From page
98
To page
110
Abstract
Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic strontium (Sr) and neodymium (Nd) isotopes from a sediment core collected on the Nile deep-sea fan. This 6-m long core was retrieved at ∼ 700 m water-depth and is characterized by the presence of a 5-m thick section of finely laminated sediments, which were deposited between 9.5 and 7.3 ka BP and correspond to the African Humid Period (AHP). The data show distinct changes in eolian dust inputs as well as variations in discharge of the Blue Nile and White Nile. Sedimentation was mainly controlled by changes in fluvial discharge during the Holocene, which was predominantly forced by low-latitude summer insolation and by the location of the eastern African Rain Belt. The changes in relative contribution from the Blue Nile and White Nile followed changes in low-latitude spring/autumn insolation, which highlights the role of changes in seasonality of the precipitation on the Nile River regime. The relative intensity of the Blue Nile discharge was enhanced during the early and late Holocene at times of higher spring insolation (with massive erosion and runoff during the AHP at times of high summer insolation), while it was reduced between 8 and 4 ka at times of high autumn insolation. The gradual insolation-paced changes in fluvial regime were interrupted by a short-term arid event at 8.5–7.3 ka BP (also associated with rejuvenation of bottom-water ventilation above the Nile fan), which was likely related to northern hemisphere cooling events. Another arid event at 4.5–3.7 ka BP occurred as the apex of a gradually drier phase in NE Africa and marks the end of the AHP.
Keywords
abrupt climatic events , bottom seawater oxygenation , African Humid Period , Nile River , fluvial sources , insolation changes
Journal title
Earth and Planetary Science Letters
Serial Year
2013
Journal title
Earth and Planetary Science Letters
Record number
2331491
Link To Document