Title of article :
Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
Author/Authors :
-، - نويسنده Department of Chemical Engineering, University of Tabriz, Tabriz, I.R. IRAN Tarjomannejad, Ali
Issue Information :
فصلنامه با شماره پیاپی 76 سال 2015
Pages :
15
From page :
97
To page :
111
Abstract :
-
Abstract :
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Vapor pressure data were taken from literature for wide ranges of temperature (68.55-559.15 K). Based on results, the best structure for feed-forward back propagation neural network is Levenberg-Marquardt back propagation training algorithm, logsig transfer function for hidden layer and linear transfer function for output layer. The multiplayer network model consists of temperature, acentric factor, critical temperature, critical pressure and the structure of molecules as inputs, 10 neurons in the hidden layer and one neuron in the output layer corresponding to vapor pressure. The weights are optimized to minimize error between experimental and calculated data. Results show that optimum neural network architecture is able to predict vapor pressure data with an acceptable level. The trained network predicts the vapor pressure data with average relative deviation percent of 1.18%.
Journal title :
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Serial Year :
2015
Journal title :
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Record number :
2332329
Link To Document :
بازگشت