Title of article
On the 2-absorbing ideals in commutative rings
Author/Authors
H.، Payrovi S. نويسنده Imam Khomeini International University , , S.، Babaei نويسنده Islamic Azad University ,
Issue Information
فصلنامه با شماره پیاپی - سال 2013
Pages
6
From page
895
To page
900
Abstract
Let R be a commutative ring with identity. In this article, we study a generalization of prime ideal. A proper ideal I of R is called a 2-absorbing ideal if whenever abc ? I for a,b,c ? R, then ab ? I or bc ? I or ac ? I. It is shown that if I is a 2-absorbing ideal of a Noetherian ring R, then R=I has some ideals Jn, where 1 ? n ? t and t is a positive integer, such that Jn possesses a prime filtration FJn : 0 ? R(x1+I) ? R(x1+I) ? R(x2+I) ?...? R(x1+I) ?...?R(xn+I) = Jn with AssR(Jn) = { I :R xi | i = 1; . . . . n} and | AssR(Jn) | = n. Also, a 2-Absorbing Avoidance Theorem is proved.
Journal title
Bulletin of the Malaysian Mathematical Sciences Society
Serial Year
2013
Journal title
Bulletin of the Malaysian Mathematical Sciences Society
Record number
2332405
Link To Document