• Title of article

    Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: New palaeomagnetic data from Namibia

  • Author/Authors

    Dodd، نويسنده , , Sarah C. and Mac Niocaill، نويسنده , , Conall and Muxworthy، نويسنده , , Adrian R.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2015
  • Pages
    14
  • From page
    16
  • To page
    29
  • Abstract
    There is long-standing correlation between Large Igneous Provinces (LIPs) and major mass extinction events in the Geological Record, postulated to be due to the emission of large quantities of volcanic gases over a geologically short period of time causing major climatic perturbations within the Earth system. The ∼135 Ma Paraná–Etendeka volcanic province of Brazil and Namibia represents something of an enigma amongst LIPs. Despite an erupted volume (>1 Mkm3) comparable to other LIPs associated with mass extinctions, such as the Siberian or Deccan traps, it is not linked to a known mass extinction event. This suggests that the Paraná–Etendeka volcanic province was emplaced over longer timescales than other LIPs, and/or emitted a lower concentration of volatiles, directly or indirectly during its emplacement. sent a new, detailed magnetostratigraphy for the Etendeka portion of the province that suggests emplacement took place over longer timescales (>4 Ma) than those associated with other LIPs. Palaeomagnetic analysis of 893 specimens from 99 sites, in sections that encompass nearly the complete Etendeka stratigraphy, yielded high-quality data from 70 sites (612 specimens). These record 16 individual polarity intervals, which can be correlated with Chrons 15 to 11 of the geomagnetic polarity time scale (GPTS) while also providing two new, high quality palaeopoles for South Africa at 130–135 Ma. Our magnetostratigraphy reveals a minimum period of volcanic activity in excess of 4 Myrs and, importantly, we find no evidence for major changes in the rates of volcanic activity through that time period, in contrast to other LIPs where volcanism seems to be concentrated in major pulses. This suggests that the anomalously feeble environmental impact of Paraná–Etendeka volcanism may be due to lower effusion rates reducing the atmospheric loading due to volcanogenic volatiles.
  • Keywords
    GPTS , magnetostratigraphy , Etendeka , LIP
  • Journal title
    Earth and Planetary Science Letters
  • Serial Year
    2015
  • Journal title
    Earth and Planetary Science Letters
  • Record number

    2333234