Title of article :
RBF–ARX model of an industrial furnace for drying olive pomace
Author/Authors :
Fernando and Casanova-Pelلez، نويسنده , , P.J. and Cruz-Peragَn، نويسنده , , F. and Palomar-Carnicero، نويسنده , , J.M. and Dorado، نويسنده , , R. and Lَpez-Garcيa، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Drying operations are common in food industries. One of the main components in a drying system is the furnace. The furnace operation involves heat–mass transfer and combustion, thus it demands a complex mathematic representation. Since autoregressive methods are simple, and help to simulate rapidly a system, we model a drying furnace of olive pomace via an auto-regression with exogenous variables (ARXs) method. A neural network of radial basic functions (RBFs) defines the ARX experimental relation between the amounts of dry pomace (moisture content of 15%) used like fuel and the temperature of outlet gases. A real industrial furnace is studied to validate the proposed model, which can help to control the drying process.
Keywords :
Neuronal network , Rotary dryer , Auto-regression
Journal title :
Energy Conversion and Management
Journal title :
Energy Conversion and Management