Title of article :
Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES
Author/Authors :
Hany M. and Muyeen، نويسنده , , S.M. and Hasanien، نويسنده , , Hany M. and Al-Durra، نويسنده , , Ahmed، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
This paper presents a novel adaptive artificial neural network (ANN)-controlled superconducting magnetic energy storage (SMES) system to enhance the transient stability of wind farms connected to a multi-machine power system during network disturbances. The control strategy of SMES depends mainly on a sinusoidal pulse width modulation (PWM) voltage source converter (VSC) and an adaptive ANN-controlled DC–DC converter using insulated gate bipolar transistors (IGBTs). The effectiveness of the proposed adaptive ANN-controlled SMES is then compared with that of proportional-integral (PI)-controlled SMES optimized by response surface methodology and genetic algorithm (RSM–GA) considering both of symmetrical and unsymmetrical faults. For realistic responses, real wind speed data and two-mass drive train model of wind turbine generator system is considered in the analyses. The validity of the proposed system is verified by the simulation results which are performed using the laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the proposed adaptive ANN-controlled SMES enhances the transient stability of wind farms connected to a multi-machine power system.
Keywords :
Transient Stability , DC–DC converter , Voltage source converter (VSC) , Wind Energy , Superconducting magnetic energy storage (SMES) system
Journal title :
Energy Conversion and Management
Journal title :
Energy Conversion and Management