Title of article :
A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction
Author/Authors :
Yu، نويسنده , , Shiwei and Wang، نويسنده , , Ke-Wei Wei، نويسنده , , Yi-Ming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
10
From page :
176
To page :
185
Abstract :
The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h.
Keywords :
particle swarm optimization , Electricity demand prediction , Radial basis function neural network , genetic algorithm , Mixed coding
Journal title :
Energy Conversion and Management
Serial Year :
2015
Journal title :
Energy Conversion and Management
Record number :
2339079
Link To Document :
بازگشت