Title of article :
A structural integrity prognosis system
Author/Authors :
Papazian، نويسنده , , John M. and Anagnostou، نويسنده , , Elias L. and Engel، نويسنده , , Stephen J. and Hoitsma، نويسنده , , David and Madsen، نويسنده , , John and Silberstein، نويسنده , , Robert P. and Welsh، نويسنده , , Greg and Whiteside، نويسنده , , James B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
A science-based structural integrity prognosis system (SIPS) is being developed to provide prompt, informed predictions of the structural viability of individual aircraft based on tracking of their actual use and modeling of anticipated usage. The work is motivated by the need for more efficient use of expensive assets and for enhanced combat readiness of critical vehicles. The prognosis system will be founded on a collaboration between sensor systems, advanced reasoning methods for data fusion and signal interpretation, and modeling and simulation systems.
deling technology being developed for this program is based on a fundamental understanding of the fatigue process, and traces the structural degradation caused by fatigue back to its physical origins in the microstructure of the metallic component. Sensor systems designed to detect the earliest stages of fatigue damage provide needed input for the models, and the data from the models and the sensors are combined by the reasoning and prediction (RAP) system. The RAP system employs novel reasoning approaches for combining uncertain knowledge from the models and the sensors into a prediction of remaining useful life.
Keywords :
Structural integrity , Fatigue modeling , Microstructural models , Fatigue sensors , Reasoning and prediction systems , Prognosis , Fatigue
Journal title :
ENGINEERING FRACTURE MECHANICS
Journal title :
ENGINEERING FRACTURE MECHANICS