Title of article :
Process parameter optimization for MIMO plastic injection molding via soft computing
Author/Authors :
Chen، نويسنده , , Wen-Chin and Fu، نويسنده , , Gong-Loung and Tai، نويسنده , , Pei-Hao and Deng، نويسنده , , Wei-Jaw، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
1114
To page :
1122
Abstract :
Determining optimal process parameter settings critically influences productivity, quality, and cost of production in the plastic injection molding (PIM) industry. Previously, production engineers used either trial-and-error method or Taguchi’s parameter design method to determine optimal process parameter settings for PIM. However, these methods are unsuitable in present PIM because the increasing complexity of product design and the requirement of multi-response quality characteristics. This research presents an approach in a soft computing paradigm for the process parameter optimization of multiple-input multiple-output (MIMO) plastic injection molding process. The proposed approach integrates Taguchi’s parameter design method, back-propagation neural networks, genetic algorithms and engineering optimization concepts to optimize the process parameters. The research results indicate that the proposed approach can effectively help engineers determine optimal process parameter settings and achieve competitive advantages of product quality and costs.
Keywords :
Soft Computing , Back-propagation neural networks , Genetic algorithms , Taguchi’s parameter design , Plastic injection molding
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2345074
Link To Document :
بازگشت