Title of article :
POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases
Author/Authors :
Qin، نويسنده , , Yongsong and Zhang، نويسنده , , Shichao and Zhu، نويسنده , , Xiaofeng and Zhang، نويسنده , , Jilian and Zhang، نويسنده , , Chengqi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
2794
To page :
2804
Abstract :
To complete missing values a solution is to use correlations between the attributes of the data. The problem is that it is difficult to identify relations within data containing missing values. Accordingly, we develop a kernel-based missing data imputation in this paper. This approach aims at making an optimal inference on statistical parameters: mean, distribution function and quantile after missing data are imputed. And we refer this approach to parameter optimization method (POP algorithm). We experimentally evaluate our approach, and demonstrate that our POP algorithm (random regression imputation) is much better than deterministic regression imputation in efficiency and generating an inference on the above parameters.
Keywords :
Missing Value , Random regression imputation , Deterministic regression imputation , knowledge discovery
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2345403
Link To Document :
بازگشت