Title of article :
PSO-based single multiplicative neuron model for time series prediction
Author/Authors :
Zhao، نويسنده , , Liang and Yang، نويسنده , , Yupu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Single multiplicative neuron model is a novel neural network model introduced recently, which has been used for time series prediction and function approximation. The model is based on a polynomial architecture that is the product of linear functions in different dimensions of the space. Particle swarm optimization (PSO), a global optimization method, is proposed to train the single neuron model in this paper. An improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. The proposed CRPSO, PSO, back-propagation algorithm and genetic algorithm are employed to train the model for three well-known time series prediction problems. The experimental results demonstrate the superiority of CRPSO-based neuron model in efficiency and robustness over the other three algorithms.
Keywords :
global optimization , Cooperative random learning particle swarm optimization , Time series prediction , particle swarm optimization , Multiplicative neuron model
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications