Title of article :
Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm
Author/Authors :
Ho، نويسنده , , Wen-Hsien and Tsai، نويسنده , , Jinn-Tsong and Lin، نويسنده , , Bor-Tsuen and Chou، نويسنده , , Jyh-Horng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
3216
To page :
3222
Abstract :
In this paper, an adaptive network-based fuzzy inference system (ANFIS) with the genetic learning algorithm is used to predict the workpiece surface roughness for the end milling process. The hybrid Taguchi-genetic learning algorithm (HTGLA) is applied in the ANFIS to determine the most suitable membership functions and to simultaneously find the optimal premise and consequent parameters by directly minimizing the root-mean-squared-error performance criterion. Experimental results show that the HTGLA-based ANFIS approach outperforms the ANFIS methods given in the Matlab toolbox and reported recently in the literature in terms of prediction accuracy.
Keywords :
Surface roughness , Hybrid Taguchi-genetic learning algorithm , End milling process , Adaptive network-based fuzzy inference system
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2345481
Link To Document :
بازگشت