Title of article :
Multi-objective optimization of TSK fuzzy models
Author/Authors :
Guenounou، نويسنده , , O. and Belmehdi، نويسنده , , A. and Dahhou، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
7416
To page :
7423
Abstract :
In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using backpropagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership functions and fuzzy rules). NSGA-II is used in a second phase, to optimize the number of fuzzy rules and to fine tune the parameters. A well known benchmark is used to evaluate performances of the proposed modelling approach, and compare it with other modelling approaches.
Keywords :
Hybrid algorithm , Fuzzy rules , structure , Genetic algorithms/NSGA-II , Backpropagation
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2346444
Link To Document :
بازگشت