Title of article :
The effect of linguistic hedges on feature selection: Part 2
Author/Authors :
Cetisli، Halil نويسنده , , Bayram، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The effects of linguistic hedges (LHs) on neuro-fuzzy classifier are shown in Part 1. This paper presents a fuzzy feature selection (FS) method based on the LH concept. The values of LHs can be used to show the importance degree of fuzzy sets. When this property is used for classification problems, and every class is defined by a fuzzy classification rule, the LHs of every fuzzy set denote the importance degree of input features. If the LHs values of features are close to concentration values, these features are more important or relevant, and can be selected. On the contrary, if the LH values of features are close to dilation values, these features are not important, and can be eliminated. According to the LHs value of features, the redundant, noisily features can be eliminated, and significant features can be selected. For this aim, a new LH-based FS algorithm is proposed by using adaptive neuro-fuzzy classifier (ANFC).
s study, the meanings of LHs are used to determine the relevant and irrelevant features of real-world databases. The experimental studies are shown the success of using the LHs in FS algorithm.
Keywords :
Linguistic hedge (LH) , Pattern recognition , Multi-dimensional data analysis , Feature selection (FS) , Adaptive neuro-fuzzy classifier (ANFC)
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications