Title of article :
Use of center of gravity with the common vector approach in isolated word recognition
Author/Authors :
Gülmezo?lu، نويسنده , , M. Bilginer and Edizkan، نويسنده , , Rifat and Ergin، نويسنده , , Semih and Barkana، نويسنده , , Atalay، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, the subspace based classifier, common vector approach (CVA), with the center of gravity (COG) method is used for isolated word recognition. Since the CVA classifier is sensitive to shifts through the time axis, endpoint detection becomes extremely important for the recognition of isolated words. The COG method eliminates the need for endpoint detection. The effects of the COG method and a classical endpoint detection algorithm on the recognition rates of isolated words are investigated. The experimental results show that the COG method yields slightly higher recognition rates than the endpoint detection method in the TI-digit database when CVA is used.
Keywords :
Common vector approach , speech recognition , Center of gravity , Endpoint detection
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications