Title of article :
Automatic feature extraction using genetic programming: An application to epileptic EEG classification
Author/Authors :
Guo، نويسنده , , Ling and Rivero، نويسنده , , Daniel and Dorado، نويسنده , , Juliلn and Munteanu، نويسنده , , Cristian R. and Pazos، نويسنده , , Alejandro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
This paper applies genetic programming (GP) to perform automatic feature extraction from original feature database with the aim of improving the discriminatory performance of a classifier and reducing the input feature dimensionality at the same time. The tree structure of GP naturally represents the features, and a new function generated in this work automatically decides the number of the features extracted. In experiments on two common epileptic EEG detection problems, the classification accuracy on the GP-based features is significant higher than on the original features. Simultaneously, the dimension of the input features for the classifier is much smaller than that of the original features.
Keywords :
Genetic programming , feature extraction , K-nearest neighbor classifier (KNN) , Discrete wavelet transform (DWT) , Epilepsy , EEG classification
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications