Title of article :
Deriving collective intelligence from reviews on the social Web using a supervised learning approach
Author/Authors :
Wu، نويسنده , , Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
13149
To page :
13157
Abstract :
The Social Web holds significant value for consumer intelligence. Today, tremendous valuable information behind the social Web has not yet been fully utilized by firms to achieve competitive advantages. In this paper, we propose a machine learning approach to model latent, heterogeneous consumer tastes from social Web reviews. Our approach employs the Mixture of Experts (ME) method to derive a set of distinct consumer clusters, each of which has a cluster-conditional taste template regression model. Furthermore, our approach is able to predict the cluster membership as well as the overall response solely from a consumer’s review ratings. We provide system architecture, model specification, and result analysis. We also compare the ME model with the Latent Regression Model. In practice, our ME learning approach will enable businesses to identify distinct consumer clusters directly from the social Web in order to satisfy consumers through customization and differentiation based on cluster-specific taste templates and cluster membership.
Keywords :
NEURAL NETWORKS , mixture model , Supervised learning , mixture of experts , Taste template
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2350376
Link To Document :
بازگشت