Title of article :
Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
Author/Authors :
Guo، نويسنده , , Lie and Ge، نويسنده , , Ping-Shu and Zhang، نويسنده , , Ming-Heng and Li، نويسنده , , Lin-Hui and Zhao، نويسنده , , Yi-Bing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Pedestrians are the vulnerable participants in transportation system when crashes happen. It is important to detect pedestrian efficiently and accurately in many computer vision applications, such as intelligent transportation systems (ITSs) and safety driving assistant systems (SDASs). This paper proposes a two-stage pedestrian detection method based on machine vision. In the first stage, AdaBoost algorithm and cascading method are adopted to segment pedestrian candidates from image. To confirm whether each candidate is pedestrian or not, a second stage is needed to eliminate some false positives. In this stage, a pedestrian recognizing classifier is trained with support vector machine (SVM). The input features used for SVM training are extracted from both the sample gray images and edge images. Finally, the performance of the proposed pedestrian detection method is tested with real-world data. Results show that the performance is better than conventional single-stage classifier, such as AdaBoost based or SVM based classifier.
Keywords :
pedestrian detection , Two-stage classifier , feature extraction , Support vector machine
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications